[1]周黄标,杜凯冰,罗 源,等.基于多质点模型的重载列车平稳操纵仿真研究[J].控制与信息技术,2021,(02):8-17.[doi:10.13889/j.issn.2096-5427.2021.02.002]
 ZHOU Huangbiao,DU Kaibing,LUO Yuan,et al.Simulation Research on the Smooth Operation of Heavy-haul Train Based on Multi-particle Model[J].High Power Converter Technology,2021,(02):8-17.[doi:10.13889/j.issn.2096-5427.2021.02.002]
点击复制

基于多质点模型的重载列车平稳操纵仿真研究()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2021年02期
页码:
8-17
栏目:
控制理论与应用
出版日期:
2021-04-05

文章信息/Info

Title:
Simulation Research on the Smooth Operation of Heavy-haul Train Based on Multi-particle Model
文章编号:
2096-5427(2021)02-0008-10
作者:
周黄标杜凯冰罗 源张征方郭 维李 程
(中车株洲电力机车研究所有限公司,湖南株洲 412001)
Author(s):
ZHOU Huangbiao DU Kaibing LUO Yuan ZHANG Zhengfang GUO Wei LI Cheng
( CRRC Zhuzhou Institute Co., Ltd., Zhuzhou, Hunan 412001, China )
关键词:
重载列车自动驾驶平稳操纵纵向动力学
Keywords:
heavy-haul train autonomous driving smooth operation longitudinal dynamics
分类号:
U292.92+1
DOI:
10.13889/j.issn.2096-5427.2021.02.002
文献标志码:
A
摘要:
随着重载列车长度和重量的增加,列车内部纵向冲击也越来越大。为了保障重载列车自动驾驶的平稳性和安全性,文章对不同工况下重载列车的动力学性能展开了研究。首先建立了多质点重载列车纵向动力学模型,并将其在起车工况和通常运行工况下所计算的结果与列车真实运行数据进行对比,结果显示二者数据吻合度较好。接着对“3+0”牵引108辆编组重载货运列车的工况及牵引力变化对列车冲动的影响进行了仿真研究,结果表明,起车工况下,匀速率加载起车时列车平稳效果最好;在“鱼背”形变坡道牵引转换电制动和空气制动工况下,列车前1/3处于下降坡道时转换成电制动,则列车冲动最小、平稳操纵效果最好(即应该尽可能地在列车1/3~2/3通过坡顶时施加电制动力),而当列车前2/3处于下降坡道时转换成空气制动,平稳操纵效果最好(即应该尽可能地在列车前2/3通过坡顶后施加空气制动力)。
Abstract:
With the increase of length and weight of a heavy-haul train, longitudinal impact inside the train is also increasing to ensure the stability and safety of autonomous driving. This paper firstly compares the calculated results of the established multi-particle heavy-haul train longitudinal dynamics model under starting condition and normal operating condition with real train operating data, and the calculated results are in good agreement with the real data. Then, a simulation study is carried out on a “3+0” marshalling train with 108 heavy freight vehicles, including working conditions and effects of traction force variation on impulse of train. The results show that it is best to start a train at a uniform rate under the starting condition; in the condition of switching from traction to braking in a “fish-back” type variable ramp, the effect of switching to electric braking is best when 1/3 of the train (front part) is on the downhill and the train has the least impulse(that is, electric braking is applied as much as possible after 1/3~2/3 of the train passing through the top of the slope), and the effect of switching to air braking is best when 2/3 of the train (front part) is on the downhill( that is, air braking should be applied as much as possible after 2/3 of the train passes the slope top).

参考文献/References:

[1] 王帅,安中正,白晶,等.万吨重载列车的平稳操纵[J].机车电传动, 2005(6): 64-65, 69.

WANG S, AN Z Z, BAI J,et al. Stable operation of 10k ton heavy load train[J]. Electric Drive for Locomotives, 2005(6): 64-65, 69.
[2] 黄文.重载列车平稳操纵的基本原则和方法[J].电力机车与城轨车辆, 2011, 34(2): 59-62.
HUANG W. Ultimate principles and countermeasures of stable operation for heavy haul trains[J]. Electric Locomotives & Mass Transit Vehicles, 2011, 34(2): 59-62.
[3] 豆辉,武福,段振枢,等.基于UM的重载列车纵向冲动仿真分析[J].兰州交通大学学报, 2020, 39(1): 88-94.
DOU H, WU F, DUAN Z S, et al. Simulation Analysis of Longitudinal Impulse of Heavy-haul Train Based on UM[J].Journal of Lanzhou Jiaotong University, 2020, 39(1): 88-94.
[4] COLE C, SPIRYAGIN M, WU Q, et al. Modelling, simulation and applications of longitudinal train dynamics[J]. Vehicle System Dynamics, 2017, 55(10): 1-74.
[5] 孙树磊,丁军君,周张义,等.重载列车纵向冲动动力学分析及试验研究[J].机械工程学报, 2017, 53(8): 138-146.
SUN S L, DING J J, ZHOU Z Y,et al. Analysis and Test of Heavy haul Train Longitudinal Impulse Dynamics[J]. Journal of Mechanical Engineering, 2017, 53(8): 138-146.
[6] 牛立鹏, 孙绪彬, 严飒珊, 等. 神朔铁路万吨重载列车操纵策略研究[C]//第30届中国过程控制会议(CPCC 2019)摘要集.昆明, 中国: 中国自动化学会过程控制专业委员会, 2019: 279.
NIU L P, SUN X B, YAN S S, et al. Research on Operation Strategy of 10 000-tons Heavy Haul Trains of Shenshuo Railway[C]//Abstracts of the 30th China process control conference papers, Kunming, (CPCC 2019). Kunming, China: Process control committee of China Society of automation, 2019: 279.
[7] 孙树磊. 重载列车纵向冲动动力学研究[D].成都: 西南交通大学, 2014.
SUN S L. Longitudinal Impulse Dynamics of Heavy Haul Train[D]. Chengdu: Southwest Jiaotong University, 2014.
[8] COLE C. Longitudinal Train Dynamics[M]//Iwnicki S. Handbook of Railway Vehicle Dynamics. Boca Raton: Taylor & Francis. 2006: 237-278.
[9] 孙树磊,李芾,丁军君,等.重载列车空气制动特性多参数数学简化方法[J].铁道车辆, 2017, 55(9): 6-9, 4.
SUN S L, LI F, DING J J, et al.The Multi-parameter Mathematic Simplification Method for Air Braking Features of Heavy Haul Trains[J]. Rolling Stock, 2017, 55(9): 6-9, 4.

相似文献/References:

[1]李 勋,石阳阳,彭 勤.一种城际高速磁浮列车运行调整方法[J].控制与信息技术,2018,(02):61.[doi:10.13889/j.issn.2096-5427.2018.02.014]
 LI Xun,SHI Yangyang,PENG Qin.An Operation Adjustment Method for Intercity High Speed Maglev Train[J].High Power Converter Technology,2018,(02):61.[doi:10.13889/j.issn.2096-5427.2018.02.014]
[2]李 柏,张友民,邵之江. 自动驾驶车辆运动规划方法综述[J].控制与信息技术,2018,(06):1.[doi:10.13889/j.issn.2096-5427.2018.06.100]
 LI Bai,ZHANG Youmin,SHAO Zhijiang. Motion Planning Methodologies for Automated Vehicles: A Critical Review[J].High Power Converter Technology,2018,(02):1.[doi:10.13889/j.issn.2096-5427.2018.06.100]
[3]李 柏,张友民,邵之江.自动驾驶车辆运动规划方法综述[J].控制与信息技术,2018,(06):1.[doi:10.13889/j.issn.2096-5427.2018.06.100]
 LI Bai,ZHANG Youmin,SHAO Zhijiang.Motion Planning Methodologies for Automated Vehicles: A Critical Review[J].High Power Converter Technology,2018,(02):1.[doi:10.13889/j.issn.2096-5427.2018.06.100]
[4]冯江华,黎向宇,胡云卿,等.地铁列车舒适度最优的自动驾驶过程建模及求解[J].控制与信息技术,2018,(06):32.[doi:10.13889/j.issn.2096-5427.2018.06.006]
 FENG Jianghua,LI Xiangyu,HU Yunqing,et al.Automatic Driving Process Modeling and Solving of the Riding Comfort Optimal Problem for Metro Train[J].High Power Converter Technology,2018,(02):32.[doi:10.13889/j.issn.2096-5427.2018.06.006]
[5]胡云卿,潘文波,侯志超,等. 面向街景自动驾驶的DSC-MB-PSPNet语义分割技术研究[J].控制与信息技术,2020,(04):1.[doi:10.13889/j.issn.2096-5427.2020.01.001]
 HU Yunqing,PAN Wenbo,HOU Zhichao,et al. Research on Semantic Segmentation in Street Scenes Autonomous Driving with DSC-MB-PSPNet[J].High Power Converter Technology,2020,(02):1.[doi:10.13889/j.issn.2096-5427.2020.01.001]
[6]胡云卿,潘文波,侯志超,等.面向街景自动驾驶的DSC-MB-PSPNet语义分割技术研究[J].控制与信息技术,2020,(04):1.[doi:10.13889/j.issn.2096-5427.2020.04.100]
 HU Yunqing,PAN Wenbo,HOU Zhichao,et al.Research on DSC-MB-PSPNet Semantic Segmentation inStreet-scene Autonomous Driving[J].High Power Converter Technology,2020,(02):1.[doi:10.13889/j.issn.2096-5427.2020.04.100]
[7]黄 旺,刘布麒,刘梦琪,等.机车智能驾驶纯数字仿真测试系统研究[J].控制与信息技术,2020,(06):14.[doi:10.13889/j.issn.2096-5427.2020.06.003]
 HUANG Wang,LIU Buqi,LIU Mengqi,et al.Research on Full Digital Simulation Test System for Locomotive Intelligent Driving[J].High Power Converter Technology,2020,(02):14.[doi:10.13889/j.issn.2096-5427.2020.06.003]
[8]郑亚平,苏 震.一种基于ResNet的车钩状态识别方法及其应用[J].控制与信息技术,2021,(02):37.[doi:10.13889/j.issn.2096-5427.2021.02.005]
 ZHENG Yaping,SU Zhen.A Method of Coupler State Recognition Based on ResNet and Its Application[J].High Power Converter Technology,2021,(02):37.[doi:10.13889/j.issn.2096-5427.2021.02.005]
[9]杜凯冰,张征方,文宇良.重载货运列车自动驾驶控制技术研究[J].控制与信息技术,2020,(02):31.[doi:10.13889/j.issn.2096-5427.2020.02.006]
 DU Kaibing,ZHANG Zhengfang,WEN Yuliang.Research on Autonomous Driving Control Technology for Heavy Haul Train[J].High Power Converter Technology,2020,(02):31.[doi:10.13889/j.issn.2096-5427.2020.02.006]

备注/Memo

备注/Memo:
收稿日期:2020-09-17
作者简介:周黄标(1994—),男,硕士,主要从事货运列车自动驾驶平稳操纵技术研究。
更新日期/Last Update: 2021-05-06