[1]贺 西,何亚屏,李 嘉.磁悬浮轴承开关功率放大器及其电流控制策略优化研究[J].控制与信息技术,2021,(02):41-48.[doi:10.13889/j.issn.2096-5427.2021.02.007]
 HE Xi,HE Yaping,LI Jia.Switching Power Amplifier and Its Improved Current Control Strategy of Active Magnetic Bearing[J].High Power Converter Technology,2021,(02):41-48.[doi:10.13889/j.issn.2096-5427.2021.02.007]
点击复制

磁悬浮轴承开关功率放大器及其电流控制策略优化研究()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2021年02期
页码:
41-48
栏目:
电力与传动控制
出版日期:
2021-04-05

文章信息/Info

Title:
Switching Power Amplifier and Its Improved Current Control Strategy of Active Magnetic Bearing
文章编号:
2096-5427(2021)02-0041-08
作者:
贺 西何亚屏李 嘉
(株洲变流技术国家工程研究中心有限公司,湖南株洲 412001)
Author(s):
HE Xi HE Yaping LI Jia
( Zhuzhou National Engineering Research Center of Converters Co.,Ltd., Zhuzhou, Hunan 412001, China )
关键词:
磁悬浮轴承开关功率放大器控制带宽模型预测共桥臂拓扑
Keywords:
active magnetic bearing switching amplifier control bandwidth model to predict common-bridge arm topology
分类号:
TN722.7+5
DOI:
10.13889/j.issn.2096-5427.2021.02.007
文献标志码:
A
摘要:
为优化磁悬浮轴承系统的响应速度及系统稳定性,文章通过分析磁悬浮轴承开关功率放大器性能特点,提出了一种五轴共桥臂拓扑结构,其具有器件少、损耗小等应用优势;同时在分析磁浮轴承控制系统传递函数的基础上,推导出了使系统稳定的电流环带宽、系统阻尼与系统刚度的限制条件,并设计了一种基于模型预测的电流控制策略,其能显著提高电流环的响应速度,进而改善系统的总体性能。经仿真与实验证实,采用五轴共桥臂拓扑结构能够降低50%的系统损耗,且基于模型预测的电流策略能显著提升系统响应速度并保证系统的稳定性。
Abstract:
In order to optimize the performance of the magnetic bearing system, a five-axis common-bridge arm topology structure is proposed by analyzing the performance characteristics of magnetic bearing switching power amplifier, which has the advantages of less devices and less loss. At the same time, on the basis of analyzing the magnetic bearing control system transfer function, the system current loop bandwidth and the damping and stiffness of the constraints are deduced, and a current control strategy based on model prediction is designed, which can significantly improve response speed of current loop and overall performance of system. Simulation and test results show that the five-axis common bridge arm topology can reduce the system loss by 50%, and the current strategy based on model prediction can improve the system response speed and system stability.

参考文献/References:

[1] SCHWEITZER G, MASLEN E H, BLEULER H, et al. Magnetic 1.2ksBearings: Theory, Design, and Application to Rotating Machinery[M].Germany: Springer Press, 2010.

[2] CHIBA A, FUKAO T, ICHIKAWA O, et al. Magnetic Bearings and Bearingless Drives[M]. London: Elsevier Press, 2005.
[3] CHIBA A,FUKAO T, ICHIKAWA O. Magnetic Bearings and Bearingless Drives[J]. The Netherlands: Elsevier, Amsterdam, 2005.
[4] CARABELLI S,MADDALENO F ,MUZZARELLI M. High efficiency linear power amplifier for active magnetic bearings[J]. IEEE Transactions on Industrial Electronics, 2000, 47(1):17-24.
[5] LIU C Z, DENG Z Q, HUA C , et al. Design and implementation of a five-phase six-leg switching power amplifier for five degrees of freedom magnetic levitation bearing system[C]//2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), 2013:1254-1258.
[6] JIANG D, KSHIRSAGAR P. Analysis and Control of a Novel Power Electronics Converter for Active Magnetic Bearing Drive[J]. IEEE Transactions on Industry Applications, 2017, 53(3): 2222-2232.
[7] LU B, CHOI H, BUCKNER G D, et al. Linear parameter-varying techniques for control of a magnetic bearing system[J]. Control Engineering Practice, 2008, 16(10):1161-1172.
[8] NOSHADI A, SHI J, LEE W S, et al. System Identification and Robust Control of Multi-Input Multi-Output Active Magnetic Bearing Systems[J]. IEEE Transactions on Control Systems Technology, 2016, 24(4): 1222-1239.
[9] WEI C S, SOFFKER D. Optimization strategy for PID controller design of AMB rotor systems[J]. IEEE Transactions on Control Systems Technology, 2016, 24(3): 788-803.
[10] JIANG D, LI T, HU Z D, et al. Novel Topologies of Power Electronics Converter as Active Magnetic Bearing Drive[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 950-959.
[11] ZHOU X, FANG J, XU S. Analysis and suppression of the suspended rotor displacement fluctuation influence for motor system[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 6966–6974.
[12] GOSIEWSKI Z, MYSTKOWSKI A. Robust control of active magnetic suspension: analytical and experimental results[J]. Mechanical Systems & Signal Processing, 2008, 22(6):1297-1303.

备注/Memo

备注/Memo:
收稿日期:2020-09-02
作者简介:贺西(1993—),男,硕士研究生,主要从事电机及磁悬浮轴承控制研究。
基金项目:湖南省科技创新计划项目(2018XK2202)
更新日期/Last Update: 2021-05-06